Truth can have a variety of meanings, from the state of being the case, being in accord with a particular fact or reality, being in accord with the body of real things, events, actuality, or fidelity to an original or to a standard. In archaic usage it could be fidelity, constancy or sincerity in action, character, and utterance.

There are differing claims on such questions as what constitutes truth; what things are truthbearers capable of being true or false; how to define and identify truth; the roles that revealed and acquired knowledge play; and whether truth is subjective, relative, objective, or absolute. This post presents some topics how symbolic analysis covers some attributes of truth and truth theories.

Correspondence theory for truth

For the truth to correspond it must first be proved by evidence or an individuals valid opinion, which have similar meaning or context. This type of theory posits a relationship between thoughts or statements on the one hand, and things or objects on the other. It is a traditional model which goes back at least to some of the classical Greek philosophers such as Socrates, Plato, and Aristotle.

Coherence theory for truth

For coherence theories in general, truth requires a proper fit of elements within a whole system. Very often, though, coherence is taken to imply something more than simple logical consistency; often there is a demand that the propositions in a coherent system lend mutual inferential support to each other. Some variants of coherence theory are claimed to characterize the essential and intrinsic properties of formal systems in logic and mathematics. However, formal reasoners are content to contemplate axiomatically independent and sometimes mutually contradictory systems side by side, for example, the various alternative geometries.

Concensus theory

Consensus theory holds that truth is whatever is agreed upon, or in some versions, might come to be agreed upon, by some specified group. Such a group might include all human beings, or a subset thereof consisting of more than one person.

Pragmatic theory

The three most influential forms of the pragmatic theory of truth were introduced around the turn of the 20th century by Charles Sanders Peirce, William James, and John Dewey. Although there are wide differences in viewpoint among these and other proponents of pragmatic theory, they hold in common that truth is verified and confirmed by the results of putting one’s concepts into practice.

Peirce defines truth as follows: “Truth is that concordance of an abstract statement with the ideal limit towards which endless investigation would tend to bring scientific belief, which concordance the abstract statement may possess by virtue of the confession of its inaccuracy and one-sidedness, and this confession is an essential ingredient of truth.”

Peirce emphasizes that ideas of approximation, incompleteness, and partiality, what he describes elsewhere as fallibilism and “reference to the future”, are essential to a proper conception of truth. Although Peirce uses words like concordance and correspondence to describe one aspect of the pragmatic sign relation, he is also quite explicit in saying that definitions of truth based on mere correspondence are no more than nominal definitions, which he accords a lower status than real definitions.

Semantic theory of truth

The semantic theory of truth has as its general case for a given language:

‘P’ is true if and only if P

where ‘P’ is a reference to the sentence (the sentence’s name), and P is just the sentence itself.

Alfred Tarski developed the theory for formal languages (such as formal logic). Here he restricted it in this way: no language could contain its own truth predicate, that is, the expression is true could only apply to sentences in some other language. The latter he called an object language, the language being talked about. (It may, in turn, have a truth predicate that can be applied to sentences in still another language.) The reason for his restriction was that languages that contain their own truth predicate will contain paradoxical sentences like the Liar: This sentence is not true. See The Liar paradox. As a result Tarski held that the semantic theory could not be applied to any natural language, such as English, because they contain their own truth predicates. Donald Davidson used it as the foundation of his truth-conditional semantics and linked it to radical interpretation in a form of coherentism.

Truth in logic

Logic is concerned with the patterns in reason that can help tell us if a proposition is true or not. However, logic does not deal with truth in the absolute sense, as for instance a metaphysician does. Logicians use formal languages to express the truths which they are concerned with, and as such there is only truth under some interpretation or truth within some logical system.

A logical truth (also called an analytic truth or a necessary truth) is a statement which is true in all possible worlds[38] or under all possible interpretations, as contrasted to a fact (also called a synthetic claim or a contingency) which is only true in this world as it has historically unfolded. A proposition such as “If p and q, then p.” is considered to be logical truth because it is true because of the meaning of the symbols and words in it and not because of any facts of any particular world. They are such that they could not be untrue.

How does Symbolic Analysis cover the theories (presented above)?

Symbolic analysis has been created based on Prolog (predicate logic) so that each symbol of the logic model refers to the corresponding term of a program,  reverse engineered from an application. Therefore, in the lowest level, each term in the  atomistic symbolic model is a propostion typical for truth in logic.  Each term has been implemeted as a AHO-artefact, a symbolic element having an excellent correspondence to the code . Links between these elements are coherent having a symbolic language to describe semantics of each term (semantic theory of truth).

AHO elements create in  simulation (aho:run()) results which are side effects caused of each element. They are mimicking computations of the program. Hence, it is possible for the user to compare side effects with his/her hypotheses in a higher level of logic. If those assumptions are different or equal, this information has pragmatic value from the program comprehension point-of-view. For possible contradictions some reasons should be found. They are possible bugs/errors of the code.

Some links: